
www.OpenSourceForU.com | OPEN SOURCE FOR YOU | MARCH 2017 | 51

AdminHow To

act exactly like a single isolated switch with the help of

flows configured in the ports of all three switches by the

OpenDaylight VTN Manager.

The above example explains the concept called port

mapping in VTN, and will help beginners to understand the

basic concept better. It will also help them to compare all

other VTN concepts like VLAN mapping and MAC mapping.

VTN OpenStack integration
There are several ways to integrate OpenDaylight with

OpenStack. This article will focus on the method that uses

VTN features available on the OpenDaylight controller.

During integration, the VTN Manager works as the network

service provider for OpenStack.

The features of VTN Manager empower OpenStack

to work in a pure OpenFlow environment, in which all the

switches in the data plane are an OpenFlow switches. You

could also refer to my blog on ‘OpenDaylight Integration with

OpenStack using OVSDB’ from the link

http://www.cloudenablers.com/blog/opendaylight-

integration-with-openstack/.

The requirements are:

 � OpenDaylight Controller

 � OpenStack Control Node

 � OpenStack Compute Node

OpenDaylight support for OpenStack network types
Till the Boron release, OpenDaylight (ODL) only

supported‘Local’network type in OpenStack and there was

no support for VLAN. You may wonder why the developers

never speak about VxLAN and GRE tunnelling network

types support. You can answer that question if you recall

the example I mentioned at the beginning of this article.

A
virtual tenant network (VTN) allows users to define the
network with a look and feel of the conventional L2/

L3 network. Once the network is designed on VTN,

it automatically gets mapped into the underlying physical

network, and is then configured on the individual switch,
leveraging the SDN control protocol. The definition of the
logical plane makes it possible not only to hide the complexity

of the underlying network but also to manage network

resources better. This reduces the reconfiguration time of
network services and minimises network configuration errors.

The technical introduction given above might seem

complex to SDN beginners. In this article, I have tried to be

as simple as I can, while teaching readers about VTN and its

integration with OpenStack.

For the purpose of this article, I’m assuming readers

have a basic understanding of SDN. So let me start with

VTN directly.

The SDN VTN Manager helps you to aggregate multiple

ports from the many underlying SDN-managed switches (both

physical and virtual) to form the single isolated virtual tenant

network (VTN). Each tenant network has the capability to

function as an individual switch.

For example, consider that you have two physical

switches (say, s1 and s2) and one virtual Open vSwitch (say,

vs1) in your lab environment. Now, with the help of the VTN

Manager, it is possible to group (aggregate) the three ports

(say p1, p2 and p3) from switch s1 — i.e., s1p1, s1p2, s1p3;

two ports from switch s2 — i.e., s2p1 and s2p2; and two ports

from the virtual switch vs1 — i.e., vs1p1 and vs2p2, to form a

single switch environment (say, VTN-01).

This means, virtually, the group (tenant) named

VTN-01 is one switch with seven ports (s1p1, s1p2, s1p3,

s2p1, s2p2, vs1p1 and vs2p2) in it. This VTN-01 will

OpenDaylight is the
largest open source
SDN controller. The
OpenDaylight virtual
tenant network (VTN)
is an application that
provides a multi-tenant
virtual network on an SDN
controller. This article is a
tutorial on how to integrate
the OpenDaylight VTN
Manager with OpenStack.

Integrating OpenDaylight
VTN Manager with OpenStack

52 | MARCH 2017 | OPEN SOURCE FOR YOU | www.OpenSourceForU.com

Admin How To

To recap, I said that with the help of the VTN Manager, the

user can group multiple ports from multiple switches in the

infrastructure to form a single isolated network.

Let’s compare this with our OpenStack environment,

which has two Open vSwitches installed in the controller and

compute node.

1. Whenever a new network is created in OpenStack, VTN

Manager creates a new VTN in ODL.

2. Whenever a new sub-network is created, VTN Manager

handles it and creates a vBridge under the VTN. vBridge

is nothing but the virtual switch.

3. When a new VM is created in OpenStack, the addition

of a new port in the Open vSwitch of the compute node

is captured by VTN Manager, and it creates a vBridge

interface in the newly created vBridge and maps that Open

vSwitch port with the particular vBridge port.

4. In this case, the port (say, vs1p1) of the DHCP agent in the

Open vSwitch of the controller node and the port (vs2p1)

of the VM in the compute node are isolated from the actual

Open vSwitch, using the flow entries from the OpenDaylight
VTN Manager, to form a new virtual switch environment

called the virtual tenant network.

5. When the packet sent from the DHCP agent reaches the

OpenStack controller’s Open vSwitch port vs1p1, then

flow entries will tell the port vs1p1 to forward the packet
to the compute node's Open vSwitch port vs2p1 using the

underlying physical network. This packet will be sent as

a regular TCP packet with a source and destination MAC

address, which means that the traffic created in one network
can be sent as a regular packet across the controller and

compute node without any tunnelling protocol.

6. This explains why support for VxLAN and GRE network

types is not required.

LAB set-up layout
The VTN features support multiple OpenStack nodes. Hence,

you can deploy multiple OpenStack compute nodes.

In the management plane, OpenDaylight controller,

OpenStack nodes and OpenFlow switches (optional) should

communicate with each other.

In the data plane, Open vSwitches running in OpenStack

nodes should communicate with each other through physical or

logical OpenFlow switches (optional). Core OpenFlow switches

are not mandatory. Therefore, you can directly connect to the

Open vSwitches.

You may need to disable the firewall (UFW) in all the nodes
to reduce the complexity.

Installing OpenStack with the Open vSwitch
configuration
Installing OpenStack is beyond the scope of this article;

however, getting started with a minimal multi-node OpenStack

deployment is recommended.

To help speed up the process, you could use my fully

automated bash script for installing the OpenStack-Mitaka set-up

at https://github.com/CloudenablersPvtLtd/openstack-setup.

 Note: This script will install OpenStack and configure
the Linux bridge for networking. But for the VTN

integration to work in OpenStack, we need network

configuration with Open vSwitch. So, you must uninstall the
Linux bridge settings and reconfigure with Open vSwitch.

After the successful OpenStack installation, run the sanity

test by performing the following operations.

Create two instances on a private subnet. Then add the

floating IP address from your public network, verify that you
can connect to them and that they can ping each other.

Figure 1: Virtual Tenant Network

Logical Network

Host1
Host2 Host3 Host 4

Physical Network

VTN1 VTN2vBridge vBridge

Mininet

Figure 2: Request flow

Figure 3: LAB layout

Note:

eth0/eth1-> the interface names as

listed in the output of ifconfig

Management N/W: the Network to

exchange OF Message and other

REST interface interactions from

OpenStack to ODL

Network for VM's If OpenFlow

switches are used, please add ODL

IP Address as the OpenFlow Con-

troller IP Address for the Switch

Sequence when a VM is newly added

User adds a VM

VTN Manager configures port mapping for the VM

OpenDaylight Controller

OpenStack Control Node

OpenStack Compute Node

ML2 Driver

Neutron Interface

VTN Manager libvirt
VM VM

OVSDB Server

bridge (br-int)OVSDB Plugin

VTN Manager searches Neutron Port information related to the notified interface
VTN Manager receives notification of the interface creation
libvirt creates an interface for the VM

libvirt creates the VM

Neutron Interface stores a Neutron Port information for the VM

1.

7.

6.

5.

4.

3.

2.

www.OpenSourceForU.com | OPEN SOURCE FOR YOU | MARCH 2017 | 53

AdminHow To

Installing OpenDaylight
The OpenDaylight controller runs in a JVM. The

OpenDaylight-Boron release requires OpenJDK8, which you

can install using the command given below:

$apt-get install openjdk-8-jdk

Download the latest OpenDaylight-Boron package from

the official repo, as follows:

$wget https://nexus.opendaylight.org/content/repositories/

opendaylight.release/org/opendaylight/integration/

distribution-karaf/0.5.1-Boron-SR1/distribution-karaf-0.5.1-

Boron-SR1.tar.gz

Untar the file as the root user, and start OpenDaylight
using the commands given below:

$ tar -xvf distribution-karaf-0.5.1-Boron.tar.gz

$ cd distribution-karaf-0.5.1-Boron.tar.gz

$./bin/karaf

Now, you should be in OpenDaylight’s console. Install all

the required features, as follows:

opendaylight-user@root> feature:install odl-vtn-manager-

neutron

opendaylight-user@root> feature:install odl-vtn-manager-rest

opendaylight-user@root> feature:install odl-mdsal-apidocs

opendaylight-user@root> feature:install odl-dlux-all

Feature installation may take some time. Once the

installation is complete, you can check whether everything is

working fine by using the following curl call:

$ curl -u admin:admin http://<ODL_IP>:8080/controller/nb/v2/

neutron/networks

The response should be an empty network list if

OpenDaylight is working properly.

Now, you should be able to log into the DLUX interface

on http://<ODL_IP>:8181/index.html.

The default username and password are admin/ admin.

Additionally, you could find useful log details at the
following location:

$ tail -f /<directory_of_odl>/data/log/karaf.log

$ tail -f /<directory_of_odl>/logs/web_access_log_2015-12.txt

Now, you have a working OpenDaylight-Boron set-up.

Let’s get into the integration part.

Configuring OpenStack for VTN integration
Step 1

 Erase all VMs, networks, routers and ports in the controller

node, since you already have a working OpenStack set-up.

You might test for VM provisioning as a sanity test, but before

integrating OpenStack with OpenDaylight, you must clean up

all the unwanted data from the OpenStack database. When using

OpenDaylight as the Neutron back-end, ODL expects to be the

only source for Open vSwitch configuration. Because of this, it
is necessary to remove existing OpenStack and Open vSwitch

settings to give OpenDaylight a clean slate.

The following steps will guide you through the cleaning process.

 � Delete instances, as follows:

$ nova list

$ nova delete <instance names>

 � Remove links from subnets to routers, as follows:

$ neutron subnet-list

$ neutron router-list

$ neutron router-port-list <router name>

$ neutron router-interface-delete <router name> <subnet ID or name>

 � Delete subnets, nets and routers, as follows:

$ neutron subnet-delete <subnet name>

$ neutron net-list

$ neutron net-delete <net name>

$ neutron router-delete <router name>

 � Check that all ports have been cleared – at this point, this

should be an empty list:

$ neutron port-list

 � Stop the Neutron service, as follows:

$ service neutron-server stop

While Neutron is managing the OVS instances on the compute

and control nodes, OpenDaylight and Neutron may be in conflict. To

Figure 4: VTN OpenStack architecture

OpenDaylight Controller

OpenStack Control Node

VM1

VM2

VM3

VM4

OpenStack Compute Node

DHCP

OVS

OVS

Physical Switch

DHCP

54 | MARCH 2017 | OPEN SOURCE FOR YOU | www.OpenSourceForU.com

Admin How To

prevent issues, let’s turn off the Neutron server on the network

controller and Neutron’s Open vSwitch agents on all hosts.

Step 2: Configuring Open vSwitches in the controller and
compute nodes
The Neutron plugin in every node must be removed because

only OpenDaylight will be controlling the Open vSwitches.

So, on each host, we will erase the pre-existing Open vSwitch

config and set OpenDaylight to manage the Open vSwitch:

$ apt-get purge neutron-plugin-openvswitch-agent

$ service openvswitch-switch stop

$ rm -rf /var/log/openvswitch/*

$ rm -rf /etc/openvswitch/conf.db

$ service openvswitch-switch start

$ ovs-vsctl show

The above command must return the empty set except

OpenVswitch ID and it’s Version.

Step 3:Connecting Open vSwitch to OpenDaylight
Use the command given below to make OpenDaylight
administer Open vSwitch:

$ ovs-vsctl set-manager tcp:<OPENDAYLIGHT MANAGEMENT IP>:6640

You can copy the Open vSwitch ID from the command

ovs-vsctl show. Execute the above command in all the nodes

(controller and compute nodes) to set ODL as the manager for

Open vSwitch:

$ ovs-vsctl show

The above command will show that you are connected to

the OpenDaylight server, which will automatically create a

br-int bridge.

[root@vinoth ~]# ovs-vsctl show

9e3b34cb-fefc-4br4-828s-084b3e55rtfd

Manager “tcp:192.168.2.101:6640”

Is_connected: true

Bridge br-int

Controller “tcp:192.168.2.101:6633”

fail_mode: secure

Port br-int

Interface br-int

ovs_version: “2.1.3”

If you get any error messages during bridge creation, you

may need to log out from the OpenDaylight Karaf console

and check the 90-vtn-neutron.xml file from the following
path distribution-karaf-0.5.0-Boron/etc/opendaylight/karaf/.

The contents of 90-vtn-neutron.xml should be as follows:

bridgename=br-int

portname=eth1

protocols=OpenFlow13

failmode=secure

By default, if 90-vtn-neutron.xml is not created, VTN uses

ens33 as the port name.

After running the ODL controller, please ensure it listens

to the following ports: 6633, 6653, 6640 and 8080.

 Note:

• 6633/6653 are the OpenFlow ports.

 � 6640 is the OVS Manager port.

 � 8080 is the port for the REST API.

Step 4: Configure ml2_conf.ini for the ODL driver
Edit vi /etc/neutron/plugins/ml2/ml2_conf.ini in all the

required nodes and modify the following configuration. Leave
the other configurations as they are.

[ml2]

type_drivers = local

tenant_network_types = local

mechanism_drivers = opendaylight

[ml2_odl]

password = admin

username = admin

url = http://<OPENDAYLIGHT SERVER’s IP>:8080/controller/nb/

v2/neutron

Step 5: Configure the Neutron database
Reset the Neutron database, as follows:

$ mysql -uroot –p

$ drop database neutron;

$ create database neutron;

$ grant all privileges on neutron.* to ‘neutron’@’localhost’

identified by ‘<YOUR NEUTRON PASSWORD>’;

$ grant all privileges on neutron.* to ‘neutron’@’%’

identified by ‘<YOUR NEUTRON PASSWORD>’;

$ exit

$ su -s /bin/sh -c "neutron-db-manage --config-file /etc/

neutron/neutron.conf --config-file /etc/neutron/plugins/ml2/

ml2_conf.ini upgrade head" neutron

Restart the Neutron-server, as follows:

$ service neutron-server start

Step 6: Install the Python-networking-odl Python module
IMPORTANT: You should get the status alert if the Neutron

service fails to start by this time. Don’t worry. This is a

temporary issue since you have enabled OpenDaylight as the

mechanism_driver but not yet installed the Python module for it.

Install the Python-networking-odl Python module, as follows:

www.OpenSourceForU.com | OPEN SOURCE FOR YOU | MARCH 2017 | 55

AdminHow To

$ apt-get install python-networking-odl

Now, restart the Neutron server and check its status. It

should be running without errors.

Step 7: Verify the integration
We have almost completed the integration of OpenStack with

VTN. Now, create initial networks in OpenStack and check

whether a new network is created and posted to ODL, for

which VTN Manager creates a VTN.

Use the curl commands given below to verify the creation

of the network and VTN:

$ curl --user "admin":"admin" -H "Content-type: application/

json" -X GET http://<ODL_IP>:8181/restconf/operational/

vtn:vtns/

$ curl -u admin:admin http://<ODL_IP>:8080/controller/nb/v2/

neutron/ networks

Whenever a new sub-network is created in the OpenStack

Horizon, VTN Manager will handle it and create a vBridge

under the VTN. When you create a new VM in OpenStack,

the interface (br-int) mentioned as the integration bridge in

the configuration file will be added with more interfaces, and
the network is provisioned for it by the VTN Neutron bundle.

The addition of the new port is captured by VTN Manager,

and it creates a vBridge interface with port mapping.

When the VM starts to communicate with the other

VMs that have been created, VTN Manager will install

flows in the OVS and other OpenFlow switches to facilitate
communication between the VMs.

 Note: To access OpenDaylight RestConf API

documentation, use the link http://<ODL_IP>:8181/

apidoc/explorer/index.html, which points to your ODL_IP.

 If everything works correctly, you will able to communicate

with other VMs created in the different compute nodes.

The VTN project doesn't support the vRouter up to the

Boron release, which means that the floating IP operation in
OpenStack is not supported when integrating VTN Manager

with OpenStack. It might support the vRouter in the Carbon

or Nitrogen releases.

By: Vinoth Kumar Selvaraj

The author is a DevOps engineer at Cloudenablers Inc., a cloud
technology startup based in Chennai. He has also worked as
a book reviewer with PackPub Publishers, for books related
to OpenStack. He blogs at http://www.hellovinoth.com. His
Twitter handle is @vinoth6664.

[1] http://www.hellovinoth.com/
[2] http://www.cloudenablers.com/blog/
[3] https://www.opendaylight.org/
[4] http://docs.openstack.org/

References

Statement about ownership and other particulars about

OPEN SOURCE FOR YOU

FORM IV (See Rule 8)

1. Place of publication : New Delhi

2. Periodicity of its publication : Monthly

3. Printer’s Name : Ramesh Chopra

 Nationality : Indian

 Address : OPEN SOURCE FOR YOU

 D-87/1, Okhla Industrial Area,

 Phase-1, New Delhi 110020

4. Publisher’s Name : Same as (3) above

 Nationality

 and address

5. Names and addresses of : EFY Enterprises Pvt Ltd

 individuals who own the D-87/1, Okhla Industrial Area,

 newspaper & partners or Phase-1, New Delhi 110020

 shareholders holding more

 than 1% of the total capital

I, Ramesh Chopra, hereby declare that the particulars given above are true to the best of

my knowledge and belief.

Date: 28-2-2017

Ramesh Chopra

Publisher

